Credit Hours: 3-0

Prerequisite: None

Course Objectives: The main objective of this course is to train students to acquaint with the processes involved in numerical technique. The rigorous analysis of the numerical techniques to solve different problems pertaining to physical processes will be presented. Moreover, the students will get to know the programming sense of numerical procedures.

Core contents: Root finding techniques, Interpolation, Numerical differentiation, Runge-Kutta methods, Higher order method, Boundary value problem, Introduction to finite difference method for ODEs and PDEs

Course Contents: Newton's method for algebraic equations, interpolation and Lagrange polynomial, numerical differentiation, higher order Taylor methods, Runge-Kutta methods, higher-order differential equations and system of equations, the linear and nonlinear shooting methods, introduction to finite difference method for ODEs and PDEs

Course Outcomes: After reading this course one will be able to:

- Understand basics and advanced techniques in numerical methods
- Find solutions of system of nonlinear equations
- Solving IVP and BVP numerically
- Apply finite difference method to partial differential equations

Overview basics of numerical method algorithm and its implementation in software (MATLAB)

Textbook:

Numerical Methods for Engineers and Scientists Using MATLAB by Ramin S.

Esfandiari, CRCPress, 2nd Edition, 2017

Computational Fluid Dynamics by Klasus A. Hoffmann and Steve T. Chiang, Fourth Edition, 2000.

Reference Books

Numerical Analysis By Richard L. Burden, J. Douglas Faires and Annette M.

Burden, 10 E, CengageLearning, 2016

Applied Numerical Analysis by Curtis F. Gerald and Patrick O. Wheatley, 7th Edition, Publisher: Pearson, 2003.

Theory and Application of Numerical Analysis by G. M. M. Phillips and Peter J. Taylor, 2nd edition, Academic Press, 1996

Numerical Analysis by David Kincaid and Ward Cheney, 7th Edition, Cengage Learning, 2012

ASSESSMENT SYSTEM

ASSESSIVIENT STSTEW							
Nature of assessment			Frequency	Weightage (%age)			
Quizzes			Minimum 3	10-15			
Assignments			-	5-10			
Midterm			1	25-35			
End Semester			1	40-50			
Examination							
Project(s)			-	10-20			
Weekly Breakdown							
Week	Sections	Торіс					
	3.2,	<u>Review of Root Finding</u>					
	3.3,	MethodsBisection method,					
1	3.4,	Regula Falsi Method (Method of False					
	4.7.2	Position), Fixed-Point Method					
		Fixed	-Point Iteration Method	for a System of Nonlinear			
		Equa	tions				
	3.5,	Review of Secant Method					
2	3.6,	Review of Newton's Method (Newton–Raphson Method),					
	4.7.1	Newton's Method for a System of Nonlinear Equations					
		Tridiagonal Systems: Thomas Method					
	4.3.4,	• Iterative Solution of Linear Systems: Jacobi Iteration					
3	4.5,	Method, Gauss–Seidel Iteration Method –					
	4.6	• ill-Conditioning and Error Analysis: Condition Number,					
		Conc	litionNumber, Ill-Conditio	oning, Computational Error			
	5.5.1	Review of	of Interpolation				
	5.5.3	Polynomial					
	5.5.5	Interpolation:					
4	5.6.1	Lagrange Interpolating Polynomials,					
	5.6.2	Newton Divided-Difference Interpolating					
		Polynomials, Newton Forward-Difference					
		Interpolating Polynomials,					
		 Splin 	е				
		Interpola	tionLinear				
		Splines,	Quadratic				
		Splines,					

_

		Nove onic of Different tistics			
	6.2.1	Numerical Differentiation			
	6.2.2	Finite-Difference Formulas for Numerical Differentiation:			
5	7.1	Finite-Difference Formulas for the First Derivative and Second			
	7.2	Derivative			
		Introduction to IVP			
		One-Step Methods			
	7.3	Euler's Method:			
6		Error Analysis for Euler's			
		Method Local And Global			
		Truncation Errors			
		Higher-Order Taylor Methods			
7	7.4.1.1	Runge–Kutta Method			
	7.4.1.2	Second-Order Runge–Kutta (RK2) Methods:			
	7.4.1.3	Improved Euler's			
	7.4.1.4	Method, Heun's			
		Method			
		Ralston's Method			
		Graphical Representation of Heun's Method			
	7.4.2.1	Third-Order Runge–Kutta (RK3) Methods:			
8	7.4.2.2	The Classical RK3			
		Method, Heun's RK3			
		Method			
9	Mid Seme	ster Exam			
	7.4.3.1	Fourth-Order Runge–Kutta (RK4) Methods:			
10	7.4.3.2	The Classical RK4 Method,			
	7.4.5	Higher-Order Runge–Kutta Methods			
		Runge–Kutta Fehlberg (RKF) Method			
		Numerical Solution of a System of First-			
11	7.6.2.1	Order ODEsEuler's Method for			
	7.6.2.2	System,			
	7.6.2.3	Heun's Method for System,			
		Classical RK4 Method for			
		Systems			

	7.7.1	Stability:	
12	7.7.2	Euler's Method	
		Euler's Implicit Method	
		Shooting Method:	
13	8.4	Linear BVP	
		Nonlinear	
		BVP	
		Finite-Difference Method:	
14	8.5	Finite-Difference Method, Linear BVP With Mixed	
		BoundaryConditions	
	8.6	MATLAB Built-In Function bvp4c for Boundary-Value Problems	
15	8.6.1	Second-Order BVP	
	2.6	Finite difference Approximation for Mixed Partial Derivatives	
16	(Hofman	Taylor series expansion	
	n) CFD		
	10.3.1	Numerical Solution of Partial Differential Equations	
17	10.3.2	Parabolic Partial Differential Equations	
		Crank–Nicolson (CN) Method	
18	End Semester Exam		